Causal mediation analysis with multiple mediators

Stijn Vansteelandt

Ghent University, Belgium London School of Hygiene and Tropical Medicine, U.K.

Joint work with Rhian Daniel, *London School of Hygiene and Tropical Medicine*, Johan Steen, *Ghent University* and Tyler VanderWeele, *Harvard University*

Introduction

Often more than one mediational process is involved in the relation between an exposure and an outcome.

• investigators may hypothesize multiple mediators when trying to understand causal mechanism.

Introduction

Often more than one mediational process is involved in the relation between an exposure and an outcome.

- investigators may hypothesize multiple mediators when trying to understand causal mechanism.
- interventions may be designed to affect outcome by changing multiple mediators

Multiple Risk Factor Intervention Trial (MRFIT)

designed to prevent heart disease by lowering smoking, cholesterol and blood pressure.

Introduction

Often more than one mediational process is involved in the relation between an exposure and an outcome.

- investigators may hypothesize multiple mediators when trying to understand causal mechanism.
- interventions may be designed to affect outcome by changing multiple mediators

Multiple Risk Factor Intervention Trial (MRFIT)

designed to prevent heart disease by lowering smoking, cholesterol and blood pressure.

 there may be post-treatment confounding: confounders may be mediators at the same time.

(VanderWeele, Vansteelandt and Robins, 2014)

Multiple mediator models

Can we infer the effect mediated via blood pressure, but not smoking nor cholesterol?

Traditional mediation analysis

- The traditional literature on structural equation models (MacKinnon, 2008) provides a framework that
 - promises much
 - and is easy to apply.
- But does it deliver?

Critiques on traditional mediation analysis

(Robins and Greenland, 1992; Pearl, 2001; VanderWeele and Vansteelandt, 2009, 2010; Imai et al., 2010)

It is vague about interpretation of the effects.

Critiques on traditional mediation analysis

(Robins and Greenland, 1992; Pearl, 2001; VanderWeele and Vansteelandt, 2009, 2010; Imai et al., 2010)

- It is vague about interpretation of the effects.
- It is (therefore) vague about validity.

(consider the problem of adjustment for post-treatment variables)

Critiques on traditional mediation analysis

(Robins and Greenland, 1992; Pearl, 2001; VanderWeele and Vansteelandt, 2009, 2010; Imai et al., 2010)

- It is vague about interpretation of the effects.
- It is (therefore) vague about validity.

(consider the problem of adjustment for post-treatment variables)

It has no justification for nonlinear models.

With a single mediator, important advances have been made with the advent of model-free definitions:

natural direct effect : $E \{Y(1, M(0))\} - \underbrace{E \{Y(0, M(0))\}}_{E\{Y(0)\}}$

With a single mediator, important advances have been made with the advent of model-free definitions:

natural direct effect :
$$E \{Y(1, M(0))\} - \underbrace{E \{Y(0, M(0))\}}_{E\{Y(0)\}}$$

A corresponding measure of natural indirect effect is obtained as

$$E \{Y(1)\} - E \{Y(0)\} - [E \{Y(1, M(0))\} - E \{Y(0)\}]$$

= E {Y(1, M(1))} - E {Y(1, M(0))}

(Robins and Greenland, 1992; Pearl, 2001; VanderWeele and Vansteelandt, 2009, 2010; Imai et al., 2010)

Two decompositions

Alternatively, we can define the natural direct effect as

 $E \{Y(1, M(1))\} - E \{Y(0, M(1))\}$

Two decompositions

Alternatively, we can define the natural direct effect as

 $E \{Y(1, M(1))\} - E \{Y(0, M(1))\}$

A corresponding measure of natural indirect effect is

$$E \{Y(0, M(1))\} - E \{Y(0, M(0))\}$$

(Robins and Greenland, 1992; Pearl, 2001; VanderWeele and Vansteelandt, 2009, 2010; Imai et al., 2010)

 Although effect estimands are - unavoidably - complex, it is at least clear what they are.

- Although effect estimands are unavoidably complex, it is at least clear what they are.
- Many estimation strategies exist, some of which are available in software.

- Although effect estimands are unavoidably complex, it is at least clear what they are.
- Many estimation strategies exist, some of which are available in software.
- We have a reasonably good understanding of the conditions under which these strategies are valid.

 The bad news...: without making untestable assumptions, real-world experimental data carry no information about natural direct and indirect effects.

(Robins and Richardson, 2010)

 The bad news...: without making untestable assumptions, real-world experimental data carry no information about natural direct and indirect effects.

(Robins and Richardson, 2010)

- *The good news...:* valid effects can be obtained if there is a set of variables *C* that
 - is sufficient to adjust for confounding of the effects of exposure on mediator and outcome; this is trivially satisfied when the exposure is randomised.

 The bad news...: without making untestable assumptions, real-world experimental data carry no information about natural direct and indirect effects.

(Robins and Richardson, 2010)

- *The good news...:* valid effects can be obtained if there is a set of variables *C* that
 - is sufficient to adjust for confounding of the effects of exposure on mediator and outcome; this is trivially satisfied when the exposure is randomised.
 - along with A, is sufficient to adjust for confounding of the effect of mediator on outcome;
 - none of those confounders should be affected by exposure.
- The latter makes it difficult to handle multiple mediators. (VanderWeele and Vansteelandt, 2013)

Handling multiple mediators is challenging

Handling multiple mediators is challenging

One exception is when handling multiple mediators 'en bloc'.

Multiple mediator analysis, 'en bloc'

natural direct effect:

 $E \{Y(1, M_1(0), M_2(0), M_3(0)) - Y(0, M_1(0), M_2(0), M_3(0))\}$

Multiple mediator analysis, 'en bloc'

natural direct effect:

 $E \{Y(1, M_1(0), M_2(0), M_3(0)) - Y(0, M_1(0), M_2(0), M_3(0))\}$

natural indirect effect:

 $E \{Y(1, M_1(1), M_2(1), M_3(1)) - Y(1, M_1(0), M_2(0), M_3(0))\}$

Inferring pathways remains challenging

Can we infer the effect mediated via blood pressure, but not smoking nor cholesterol?

Because inferring pathways is so challenging, repeated single mediator analyses are quite popular:

- Single mediator analysis with mediator *M*₁.
- Single mediator analysis with mediator *M*₂.
- Single mediator analysis with mediator *M*₃.

Mediation analysis considering only M_1

Mediation analysis considering only M_2

Mediation analysis considering only M_3

Problem 1: no effect decomposition

- The sum of the individual mediated effects may not equal the joint mediated effect.
- This is obvious when the mediators influence one another.

Problem 1: no effect decomposition

- The sum of the individual mediated effects may not equal the joint mediated effect.
- This is obvious when the mediators influence one another.

- But it may even happen if the mediators are unrelated, when the mediators interact on the additive scale in the effect they produce on the outcome.

Problem 2: confounding

The effect mediated via M_2 is biased due to confounding by M_1 .

In view of this, we propose sequential mediation analysis 'en bloc':

(VanderWeele and Vansteelandt, 2013)

- Mediation analysis with mediator *M*₁.
- Mediation analysis 'en bloc' with mediators M_1, M_2 .
- Mediation analysis 'en bloc' with mediators M_1, M_2, M_3 .

Mediation analysis w.r.t. bloc M_1, M_2, M_3 yields...

... the direct effect

Mediation analysis w.r.t. bloc M_1, M_2, M_3 yields...

... the effect mediated via M_1, M_2 and M_3

Mediation analysis w.r.t. bloc M_1, M_2 yields...

... the effect mediated via M_1, M_2

Mediation analysis w.r.t. bloc M_1, M_2 yields...

... the effect mediated via M_3 , but not M_1, M_2

Mediation analysis w.r.t. bloc M_1 yields...

... the effect mediated via M_1

Mediation analysis w.r.t. bloc M_1 yields...

... the effect mediated via M_2 , but not M_1

An imputation approach

(Tchetgen Tchetgen and Shpitser, 2012; Albert, 2012; VanderWeele and Vansteelandt, 2013) To estimate

```
E \{Y(a, M_1(a'), M_2(a', M_1(a')))\}
```

- predict the outcome for each subject *i* as if (s)he had exposure *a*, adjusting for confounders *C*.
- average these predicted values in subjects with exposure a'

This does not require modelling the joint distribution of the mediators,

and is of special interest when the exposure is randomly assigned.

If not, additional propensity score weighting can be used.

• The above strategy gives 2 possible decompositions.

- The above strategy gives 2 possible decompositions.
- However, there are many more possible ways to 'define' a specific pathway.

(Daniel et al., 2015)

• For instance, with a binary exposure, we can control

exposure at
$$a = 0, 1$$

- The above strategy gives 2 possible decompositions.
- However, there are many more possible ways to 'define' a specific pathway.

(Daniel et al., 2015)

For instance, with a binary exposure, we can control

- The above strategy gives 2 possible decompositions.
- However, there are many more possible ways to 'define' a specific pathway.

(Daniel et al., 2015)

· For instance, with a binary exposure, we can control

 When the exposure is continuous, there are infinitely many possible choices.

- With a binary exposure and 2 mediators, there are 24 ways of decomposing the total effect into a direct effect and mediated effects. (Daniel et al., 2015)
- Some of these require stringent assumptions for identification.
- E.g. they set M_1 at $M_1(0)$ and M_2 at $M_2(0, M_1(1))$.

- With a binary exposure and 2 mediators, there are 24 ways of decomposing the total effect into a direct effect and mediated effects. (Daniel et al., 2015)
- Some of these require stringent assumptions for identification.
- E.g. they set M_1 at $M_1(0)$ and M_2 at $M_2(0, M_1(1))$.
- VanderWeele and Vansteelandt (2013) focus on just 2 decompositions.

- With a binary exposure and 2 mediators, there are 24 ways of decomposing the total effect into a direct effect and mediated effects. (Daniel et al., 2015)
- Some of these require stringent assumptions for identification.
- E.g. they set M_1 at $M_1(0)$ and M_2 at $M_2(0, M_1(1))$.
- VanderWeele and Vansteelandt (2013) focus on just 2 decompositions.
- We focus on the 6 decompositions that set M_1 at $M_1(a')$ and M_2 at $M_2(a'', M_1(a'))$. (Steen et al., 2016)
- This requires just slightly stronger assumptions.

Natural effect models enable parsimonious modelling

$$E\{Y(a, M_1(a'), M_2(a'', M_1(a'))\} = \beta_0 + \frac{\beta_1}{a} + \beta_2 a' + \frac{\beta_3}{a} a''$$

(Lange, Vansteelandt and Bekaert, 2012; Vansteelandt, Lange and Bekaert, 2012; Steen et al., 2016)

- Natural effect models enable more parsimonious modelling
- β_1 captures the direct effect, not via M_1, M_2 .
- β_2 captures the indirect effect via M_1 .
- β_3 captures the indirect effect via M_2 but not M_1 .

Natural effect models enable flexible modelling

(Lange, Vansteelandt and Bekaert, 2012; Vansteelandt, Lange and Bekaert, 2012; Steen et al., 2016)

 Is the indirect effect via cholesterol different depending on what level we control smoking?

 $E\{Y(a, M_1(a'), M_2(a'', M_1(a'))\} = \beta_0 + \beta_1 a + \beta_2 a' + \beta_3 a'' + \beta_4 a' a''$

 Is the indirect effect via smoking (but not cholesterol) different for men and women?

$$E\{Y(a, M_1(a'), M_2(a'', M_1(a'))|C\} = \beta_0 + \beta_1 a + \beta_2 a' + \beta_3 a'' + \frac{\beta_4}{\beta_4} a' C + \beta_5 C$$

A weighted imputation approach

(Steen et al., 2016) To estimate

$$E \{Y(a, M_1(a'), M_2(a'', M_1(a')))\}$$

- predict the outcome for each subject *i* as if (s)he had exposure *a*, adjusting for confounders *C*.
- calculate a weighted average of these predicted values in subjects with exposure a", using weights

$$\frac{P(M_{1i}|A_i = a', C_i)}{P(M_{1i}|A_i = a'', C_i)}$$

If the exposure is not randomly assigned additional propensity score weighting can be used.

A weighted imputation approach

(Steen et al., 2016) To estimate

$$E \{Y(a, M_1(a'), M_2(a'', M_1(a')))\}$$

- predict the outcome for each subject *i* as if (s)he had exposure *a*, adjusting for confounders *C*.
- calculate a weighted average of these predicted values in subjects with exposure a', using weights

$$\frac{P(M_{2i}|M_{1i}, A_i = a'', C_i)}{P(M_{2i}|M_{1i}, A_i = a', C_i)}$$

If the exposure is not randomly assigned additional propensity score weighting can be used.

Fitting natural effect models

• R package medflex enables fitting natural effect models with a single mediator.

(Steen et al., 2016)

• Extensions to multiple mediators forthcoming, and currently available on request.

Fitting natural effect models

• R package medflex enables fitting natural effect models with a single mediator.

(Steen et al., 2016)

- Extensions to multiple mediators forthcoming, and currently available on request.
- Weighting can be avoided so long as there are 2 mediators and no interactions.
- It can more generally be avoided using a sequential imputation approach.

Case study: WHO-LARES

Data from 5882 adult respondents.

(Shenassa et al., 2007)

Case study: WHO-LARES

(Shenassa et al., 2007)

Data from 5882 adult respondents.

- A sense of compromised control over one's living environment (e.g. keeping a house clean in the face of recurrent mold) may mediate a potential link between residence in a damp and moldy dwelling and depression.
- To what extent?

Results from a main effects model

Table 1.	Estimates	and 95	% Confidence	Intervals of the	Component	Effects Odds	
Ratios. ^a	WHO-LA	RES, 2	002-2003.				

	Weighted by $W_{1i,a'}$		Weighted by $W_{2i,a''}$		
Component	Estimate	95% CI	Estimate	95% CI	
$\exp(\hat{E}_{A \to Y})$	1.260	1.000, 1.573	1.259	1.000, 1.571	
$\exp(\hat{E}_{A \to M_1 Y})$	1.042	1.015, 1.069	1.041	0.995, 1.089	
$\exp(\hat{E}_{A \to M_2 \to Y})$	1.052	1.008, 1.098	1.048	1.016, 1.079	

Abbreviations: CI, confidence interval; WHO-LARES, World Health Organization's Large Analysis and Review of European Housing and Health Status.

^a Component effects as parameterized in the following natural effect model: logit $P\{Y(a, M_1(a'), M_2(a'', M_1(a'))) = 1|C\} = \zeta_0 + \zeta_1 a + \zeta_2 a' + \zeta_3 a'' + \zeta_4^\top C.$

No evidence of interactions between pathways (P 0.49)

36 | 43

Summary: mediation analysis 'en bloc'

Considering multiple mediators 'en bloc' has some appeal, as it adjusts for confounding

- when mediators mutually influence each other;
- share unmeasured common causes.

Summary: mediation analysis 'en bloc'

Larger blocs may thus seem preferable, although not necessarily...

Summary: pathways

- Multiple mediation analysis 'en bloc' does not provide insight into separate pathways.
- Mediation analysis 'one at a time' can be problematic, and should be avoided.
- Sequential mediation analysis is preferred, but is also prone to bias when the mediators share unmeasured common causes.

Unmeasured confounding of the mediator associations

More refined mediation analysis

Sequential mediation analysis does not provide insight into all pathways, but arguably it provides the most relevant ones.

Caveat: causal order of the mediators

- The causal order of the mediator is sometimes unknown.
- In recent work,

we develop approaches for effect decomposition which give interpretable results regardless of causal ordering.

(Vansteelandt and Daniel, 2017)

This presentation was based on ...

Daniel, R.M., De Stavola, B.L., Cousens, S.N. and Vansteelandt, S. (2014). Causal mediation analysis with multiple mediators. *Biometrics*.

Lange, T., Vansteelandt, S. and Bekaert, M. (2012). A simple unified approach for estimating natural direct and indirect effects. *American Journal of Epidemiology*, 176, 190-195.

Steen, J., Loeys, T., Moerkerke, B. and Vansteelandt, S. (2015) Medflex: An R Package for Flexible Mediation Analysis Using Natural Effect Models. *Journal of Statistical Software*, in press.

Steen, J., Loeys, T., Moerkerke, B. and Vansteelandt, S. (2016). Flexible mediation analysis with multiple mediators. *American Journal of Epidemiology*, in press.

VanderWeele, T. and Vansteelandt, S. (2013). Mediation Analysis with Multiple Mediators. *Epidemiologic Methods*, **2**, 95-115.

Vansteelandt, S. and Daniel, R.M. (2017). Interventional effects for mediation analysis with multiple mediators. *Epidemiology*, in press.

Joint mediated effect:

$$Y(1, M_1(1), M_2(1)) - Y(1, M_1(0), M_2(0))$$

Joint mediated effect:

$$Y(1, M_1(1), M_2(1)) - Y(1, M_1(0), M_2(0))$$

Sum of the individual mediated effects:

 $Y(1, M_1(1)) - Y(1, M_1(0)) + Y(1, M_2(1)) - Y(1, M_2(0))$

Joint mediated effect:

$$Y(1, M_1(1), M_2(1)) - Y(1, M_1(0), M_2(0))$$

Sum of the individual mediated effects:

 $Y(1, M_1(1)) - Y(1, M_1(0)) + Y(1, M_2(1)) - Y(1, M_2(0))$ = $Y(1, M_1(1), M_2(1)) - Y(1, M_1(0), M_2(1))$

Joint mediated effect:

$$Y(1, M_1(1), M_2(1)) - Y(1, M_1(0), M_2(0))$$

Sum of the individual mediated effects:

$$Y(1, M_1(1)) - Y(1, M_1(0)) + Y(1, M_2(1)) - Y(1, M_2(0))$$

= $Y(1, M_1(1), M_2(1)) - Y(1, M_1(0), M_2(1))$
+ $Y(1, M_1(1), M_2(1)) - Y(1, M_1(1), M_2(0))$

Joint mediated effect:

$$Y(1, M_1(1), M_2(1)) - Y(1, M_1(0), M_2(0))$$

Sum of the individual mediated effects:

$$Y(1, M_1(1)) - Y(1, M_1(0)) + Y(1, M_2(1)) - Y(1, M_2(0))$$

= $Y(1, M_1(1), M_2(1)) - Y(1, M_1(0), M_2(1))$
+ $Y(1, M_1(1), M_2(1)) - Y(1, M_1(1), M_2(0))$

The difference

$$\begin{array}{l} Y(1, M_1(1), M_2(1)) + Y(1, M_1(0), M_2(0)) \\ - Y(1, M_1(0), M_2(1)) - Y(1, M_1(1), M_2(0)) \end{array}$$

is a type of mediated interaction, which may be non-zero when both mediators interact at the individual level.